湖湘杯有一道题是知道 $(N, e, d)$ 求 $(p, q)$,当时用了 $ e\cdot d - 1 = h \cdot \varphi (n) $ 这个公式,爆破 $h$,考虑 $ \varphi (n) $ 与 $ N $ 相差不大,可以认为位数相同,求出 $ \varphi (n) $ 之后再根据 $ N = p\cdot q $ 和 $ \varphi(n) = (p - 1)(q - 1) $ 联立一个方程。
$$ \left\{ \begin{aligned} N & = pq \\ \varphi(n) & = (p-1)(q-1)\\ \end{aligned} \right. \Rightarrow N - \varphi(n) + 1 = p + q $$
可得到一个一元二次方程
$$ X^2 - (N - \varphi(n) + 1)X + N = (X - p)(X - q) $$
根据求根公式即可解出 $ p $ 和 $ q $。
# coding=utf-8
import gmpy2
def cal_bit(num):
return len(bin(num)) - 2
d = 5
e = 88447120342035329077203801890175181441227843548712394915405983098804986074228491993716303861346713336901472423214577098721961679062412555594462454080858396158886857405021364693424253936899868042331165487633709535319154171592544118785565876198853503758641178366299573880796663815089204345025378660387680199869
n = 0x009d70ebf2737cb43a7e0ef17b6ce467ab9a116efedbecf1ead94c83e5a082811009100708d690c43c3297b787426b926568a109894f1c48257fc826321177058418e595d16aed5b358d61069150cea832cc7f2df884548f92801606dd3357c39a7ddc868ca8fa7d64d6b64a7395a3247c069112698a365a77761db6b97a2a03a5
k = e * d - 1
while k % 2 == 0:
k /= 2
if cal_bit(k) == cal_bit(n):
print k
break
a = 1
b = (n - k + 1)
c = n
p = (b + gmpy2.iroot(b**2-4*a*c, 2)[0])/2
q = n / p
print int(p)
print q
之后看到有人发了 writeup,用了 Calculate primes p and q from private exponent (d), public exponent (e) and the modulus (n) 链接里的算法。
The steps involved are:
- Let $k = de – 1$. If $k$ is odd, then go to Step 4.
- Write $k$ as $k = 2^t \cdot r$, where $r$ is the largest odd integer dividing $k$, and $t\geq 1$. Or in simpler terms, divide $k$ repeatedly by $2$ until you reach an odd number.
For $i = 1$ to $100$ do:
- Generate a random integer $g$ in the range [0, n−1].
- Let $y = g^r\bmod n$
- If $y = 1$ or $y = n – 1$, then go to Step 3.1 (i.e. repeat this loop).
For $j = 1$ to $t – 1$ do:
- Let $x = y^2 \bmod n$
- If $x = 1$, go to (outer) Step 5.
- If $x = n – 1$, go to Step 3.1.
- Let $y = x$.
- Let $x = y^2 \bmod n$
- If $x = 1$, go to (outer) Step 5.
- Continue
- Output “prime factors not found” and stop.
- Let $p = GCD(y – 1, n)$ and let $q = n/p$
- Output $(p, q)$ as the prime factors.
原 writeup 里的代码是基于 sage 库的,而且有点看脸,没好好处理结果,改写了一个纯 Python 的。
# coding=utf-8
import random
import libnum
d = 5
e = 88447120342035329077203801890175181441227843548712394915405983098804986074228491993716303861346713336901472423214577098721961679062412555594462454080858396158886857405021364693424253936899868042331165487633709535319154171592544118785565876198853503758641178366299573880796663815089204345025378660387680199869
n = 0x009d70ebf2737cb43a7e0ef17b6ce467ab9a116efedbecf1ead94c83e5a082811009100708d690c43c3297b787426b926568a109894f1c48257fc826321177058418e595d16aed5b358d61069150cea832cc7f2df884548f92801606dd3357c39a7ddc868ca8fa7d64d6b64a7395a3247c069112698a365a77761db6b97a2a03a5
k = e * d - 1
r = k
t = 0
while True:
r = r / 2
t += 1
if r % 2 == 1:
break
success = False
for i in range(1, 101):
g = random.randint(0, n)
y = pow(g, r, n)
if y == 1 or y == n - 1:
continue
for j in range(1, t):
x = pow(y, 2, n)
if x == 1:
success = True
break
elif x == n - 1:
continue
else:
y = x
if success:
break
else:
continue
if success:
p = libnum.gcd(y - 1, n)
q = n / p
print 'P: ' + '%s' % p
print 'Q: ' + '%s' % q
else:
print 'Cannot compute P and Q'