看着大神们的 WP 做了一下 Jarvis OJ 上的 God Like RSA 这一题,WP 上写的都很简略,我来多说两句废话吧。
God Like RSA
既然你逼我到绝境,那就休怪我不客气了,代表上帝挑战你~
godlikeRSA.rar.bf1fcce7bdf9a1bb999df240de98ecd9
压缩包里有一个密文,一个部分缺失的私钥,一个公钥,读公钥可知 N 是 4096 位的,分解无望,肯定要从私钥着手。
Google 搜索 rsa private ctf 可以看到 Plaid CTF 2014 中的一道题和本题很类似,也是修复私钥,找到几篇 WP:
从第一篇里可以找到一个 Python 脚本。
私钥修复
Python 脚本:
#!/usr/bin/python
#-*- coding:utf-8 -*-
import re
import pickle
from itertools import product
from libnum import invmod, gcd
def solve_linear(a, b, mod):
if a & 1 == 0 or b & 1 == 0:
return None
return (b * invmod(a, mod)) & (mod - 1) # hack for mod = power of 2
def to_n(s):
s = re.sub(r"[^0-9a-f]", "", s)
return int(s, 16)
def msk(s):
cleaned = "".join(map(lambda x: x[-2:], s.split(":")))
return msk_ranges(cleaned), msk_mask(cleaned), msk_val(cleaned)
def msk_ranges(s):
return [range(16) if c == " " else [int(c, 16)] for c in s]
def msk_mask(s):
return int("".join("0" if c == " " else "f" for c in s), 16)
def msk_val(s):
return int("".join("0" if c == " " else c for c in s), 16)
E = 65537
N = to_n("""00:c0:97:78:53:45:64:84:7d:8c:c4:b4:20:e9:33:
58:67:ec:78:3e:6c:f5:f0:5c:a0:3e:ee:dc:25:63:
d0:eb:2a:9e:ba:8f:19:52:a2:67:0b:e7:6e:b2:34:
b8:6d:50:76:e0:6a:d1:03:cf:77:33:d8:b1:e9:d7:
3b:e5:eb:1c:65:0c:25:96:fd:96:20:b9:7a:de:1d:
bf:fd:f2:b6:bf:81:3e:3e:47:44:43:98:bf:65:2f:
67:7e:27:75:f9:56:47:ba:c4:f0:4e:67:2b:da:e0:
1a:77:14:40:29:c1:a8:67:5a:8f:f5:2e:be:8e:82:
31:3d:43:26:d4:97:86:29:15:14:a9:69:36:2c:76:
ed:b5:90:eb:ec:6f:ce:d5:ca:24:1c:aa:f6:63:f8:
06:a2:62:cb:26:74:d3:5b:82:4b:b6:d5:e0:49:32:
7b:62:f8:05:c4:f7:0e:86:59:9b:f3:17:25:02:aa:
3c:97:78:84:7b:16:fd:1a:f5:67:cf:03:17:97:d0:
c6:69:85:f0:8d:fa:ce:ee:68:24:63:06:24:e1:e4:
4c:f8:e9:ad:25:c7:e0:c0:15:bb:b4:67:48:90:03:
9b:20:7f:0c:17:eb:9d:13:44:ab:ab:08:a5:c3:dc:
c1:98:88:c5:ce:4f:5a:87:9b:0b:bf:bd:d7:0e:a9:
09:59:81:fa:88:4f:59:60:6b:84:84:ad:d9:c7:25:
8c:e8:c0:e8:f7:26:9e:37:95:7c:e1:48:29:0f:51:
e7:bd:98:2f:f6:cc:80:e7:f0:32:0b:89:51:92:4e:
c2:6d:50:53:2b:3b:77:72:d1:bd:1a:1f:92:d7:12:
79:61:61:c5:a4:7e:b3:85:eb:f0:7c:6d:46:03:c5:
e6:d5:81:2c:ba:7e:ea:8d:51:7d:63:55:34:2a:b6:
d4:dc:31:5a:f1:99:e3:dc:8c:83:0b:a2:2a:d5:3c:
41:48:41:54:1a:a9:e8:b6:70:bf:d3:fe:ed:19:17:
14:94:13:b3:17:e3:8b:8e:6f:53:ed:e2:44:e8:4a:
32:d6:5c:0d:a8:80:f5:fc:02:e9:46:55:d5:a4:d3:
e7:c6:30:77:f9:73:e9:44:52:d8:13:9d:5d:bf:9e:
fa:3a:b5:96:79:82:5b:cd:19:5c:06:a9:00:96:fd:
4c:a4:73:88:1a:ec:3c:11:de:b9:3d:e0:50:00:1e:
ac:21:97:a1:96:7d:6b:15:f9:6c:c9:34:7f:70:d7:
9d:2d:d1:48:4a:81:71:f8:12:dd:32:ba:64:31:60:
08:26:4b:09:22:03:83:90:17:7f:f3:a7:72:57:bf:
89:6d:e4:d7:40:24:8b:7b:bd:df:33:c0:ff:30:2e:
e8:6c:1d""")
p_ranges, pmask_msk, pmask_val = msk(""" 0: e: : : :c :c : : : :b : : : : :
:ab: e: 2: 8:c : : : 1:6 :6 : 6: f:d9: 0:
8 :5c:7 :06: : : :0 : 3:5 :4b: :6 : : :
2 : :6 : : : :2 :bc: c: :85:1 : 1:d : 3:
1:b4: : b: 1: 3: d:a : : :6e: 0:b :2 : :
:b : :9 :e : :82:8d: : :13: : : a: a:
: :4 : :c : f: : :7 :e :0a: : : b: 5:
: e:91:3 : :3c: 9: : 6: : :b5:7d: 1: :
: : :b :a1:99:6 :4 :3 :c :1a:02:4 : : 9:
9 :f : d:bd: :0 : : : :b3: : 4: :e9: 9:
: d: : :7 : :93: : e:dc: : 0: :e7: :
e : :2 : b: 2:5 : : : : : c:5f: : :e2:
: : 9: :2a: : e: : :2 : :9f: 7:3 : :
b : f:b : : 8: 7: : :f :6 :e :c : :3 : :
f7: 5: 8: 5: : : : : : 8: e: :03: c: :
33:76:e : 1:7 : c: : 0: :0b: : a: : 2: 9:
:c8:bf: : :06: 7:d5: :02: c:b :e2: 7:2 :
: """)
q_ranges, qmask_msk, qmask_val = msk(""" 0: f: :d0: 1:55: 4:31: : b:c4:8 : : e: d:
34: 3:f : : : : : 8:99:1 : : a:0 : :4 :
0 : :f : :a4:41:2 : :a : : 1: : a: c: :
: : 9: : : 2:f4: f: : : : :1 : 4:9 :
a : : :79:0 : : : : : 2: 8:b : :4 : 8:
:9b: 1: :d : :f :e4: :4 :c :e : :3 : :
7:2 : :d :8 :2 :7 : :d :67:fc:e : 0:f9: 7:
8 : : : :1 :2f: :51: : :2e:0a: e:3d: 6:
b : :dd: : 0:fb: :f4: : : :b4: 9:c : :
a: : : :d : : :6b: 2: :9b: a:60: :d6:
0:4f:16:d1: : :5 :fc: :f : :8 : : : :
1: 6:e1:9 : e:4 : 6: c: d:d :73: 3: : :7 :
:8 : 9: :3b:f : 2: : :f1: e: : :1e: :
8 : : : 6:0 : 4:99:e : : 5: : : 4: : :
: a:81:64: :7 :f : 9: d: :9 : : 7:93:f :
ac:8c: : 8: : 0: d: 8: :7 : :1d: :f : :
1 :a :6 :8 : :60: :b3: : : :89: : :14:
:5 """)
_, dmask_msk, dmask_val = msk(""" : : : f:8 :a5:d : 2: 0:b :7 : : 1: : 4:
1:0d: :3 : :6 : : : b: : : :e : : :
0e: 0:db: :1a:1c:c0: : e: : :99:bc:8 :a5:
7 :7 :7 : b: : : 8: 8: :7 :55: 2: : :f :
b2: : :b :f :4 : : 8: :b : : : : 0: :
0 : :6 :9 : : : : b: 4: : 0: a: 5:07:b :
9: c:9a: 9: : 7:9e: : b:60:f : : : :0 :
: 3:0 : : : : 1:b : : : b: 6:0 :f : :
: 2:18: 6: b:1 : : : : :d3:f3: :a : :
3: : : : : 3: d: 1: 2:7 : : d: : 2: d:
: : d:4 : :d : :6d: c:a :b6: : : : 1:
69: : 7: :89: :c :8 :61: d:25: 3:7 :1b: 4:
b : :8 :55: :49: 1:2 :3 : :1 :e9:a8: 3: :
9 : : 1:f8:d3: :e : :d : :9 :b6: : :71:
1 : :c1: : b: 1: : 6:e : :64: : :1a:c :
: b: :bf:c : : 0: : 8:a :4 : :26:a :5 :
6 : : : :eb: :e5: a: :3e:f9:10:0 : : :
6:0 : : 8: : 1:72: c:0 : f:5 : f:9c: 0: e:
7:b : : : : :d9: 4: : e:c :68: : : :
c: :3a: : :a0:ea: 3: 4: :72:a :d : 8: :
:0d:5 :0 : a: 7:c :bb: 6: 4:a :ce:d :2 : 1:
: :17:6 : : c: b: : f: :3 : 5:6 :3 :0e:
: 7:c :3e: 2: 9: 7: 6: f: e: f: 9: :f3: 9:
a :c1:6 : : 1:9 : :43: : f: 5: :0 :27: 4:
4 :a : :e9: : 8: 4:3 :8a: 6:16:d5:c : e: e:
:d : c:b :a8: : 7: : 9: :7 :7d: : : :
: : :4 :2 : : 3: 3: 6: : : :7b:0 : :
e: :0 : :a : : 5: : : : 5:1 :82:c :0d:
4 :2 :fd:36: 5:50:0 : : :d : f: 6: : :e :
0 : : :ce: :9e:8 : :0 :d :07:b3: : : :
0 :e4: : :68:b :c : : c:5 : : :3 : 7: 2:
c:e0: :5 : : :b4: :ef: 7: :1 :e : 0:f :
:6 : : : :e0:c :3 : : : 3: : d: : :
3: 3: c: a: :b : a:71: 3: 0:a : :4 :5d: :
0 :4 """)
_, dpmask_msk, dpmask_val = msk(""" : 3:2a: : d: : : : :0 :1 : f: : : 6:
1 :2 :1b:07: a:e :b :c5:58:7 : :e8: 7: 1: c:
: 1:b :a0: 4:0f:5 :67: :3 :7 :6 :f9: : c:
:79: 0:1 :65: :8 : :99: d:d : :2 :9 :0 :
e: :0 : : : : d: :d :7 :6 :a9: a:8b: b:
: : 7: a:37: : :7 :1 :6 : :c2: 7:6 :b :
e: : : : : : :b :3a:5 : : : : : :
: : :cd:8 : : d: :7 : 3: : f:e : c: :
: a: :c : f:c : 7:b :5 : : :2 :8 :8 :6 :
0a: a: : :3 :db: : 4:00: : d: :b : 5: :
20: 2: 5: :82: : 0: 6: :8a: :7 : : 8: :
4: 1: : : : 8:46: : : : : : 0:f :c8:
2 : : c:7 : : 1: : :2 : 0: 5: : : 1:9b:
6:9 : 0:74: :c : :e : : :cb:b :3 :3 : :
2: : :47: :2 : 0:5 : : : d: 6:83: : :
:c7: : :0b: : : c: :3 :8 : :9 :4 : 7:
5 :c0:fe: :f9: 1: :0 : e: 8:02: : f: :c :
55:61""")
_, dqmask_msk, dqmask_val = msk(""" :0b:7 :4 :0 : 0:6 : 7:7e: : 5: : 7: : a:
a :d : 0: 6: 4:86: : :8 : : : : :e :8f:
9: : : : 1: :2 : : 7: b:1 :5 : f: :8 :
:d :21: :e : d: :c9:e : b: : :1 : : :
:d :a2:b7: : : :f3: :42: :e : c: :f :
: 0:f :7 : 4: 5:34: :4 : c: : :8 :d : 8:
5 :af: 3:1d: 5:4 : :2 : :6 :c : 6:a :1 :5 :
a:9 : :d : : :0a:a1: :f :7 :9 :b : : :
f:2 :27: f: :0 :f6:4d: : : : : :5 : :
4:08: : 5: : 8: 5: : : :18: 4: 8:57: 2:
f: a: : :a8: f: c:f : e: 1:9 :c : 4:9 : :
: : : : : 1: :2 : :d1: : 6:e : d: :
: f:04:2 :8d: : 3: : :b : 8: :d6: : 2:
: : :6 : : f: : : 0:6 : :51: :48:19:
: : :69:4 : c: :c : : f: :f4:d : : f:
d:0 :0d:b :3 : 3:2 : : :6 : b:5 :2 : : c:
1:5a: f:f : : :7e:3e: :d :f :0 : d: c: 6:
1""")
def search(K, Kp, Kq, check_level, break_step):
max_step = 0
cands = [0]
for step in range(1, break_step + 1):
#print " ", step, "( max =", max_step, ")"
max_step = max(step, max_step)
mod = 1 << (4 * step)
mask = mod - 1
cands_next = []
for p, new_digit in product(cands, p_ranges[-step]):
pval = (new_digit << ((step - 1) * 4)) | p
if check_level >= 1:
qval = solve_linear(pval, N & mask, mod)
if qval is None or not check_val(qval, mask, qmask_msk, qmask_val):
continue
if check_level >= 2:
val = solve_linear(E, 1 + K * (N - pval - qval + 1), mod)
if val is None or not check_val(val, mask, dmask_msk, dmask_val):
continue
if check_level >= 3:
val = solve_linear(E, 1 + Kp * (pval - 1), mod)
if val is None or not check_val(val, mask, dpmask_msk, dpmask_val):
continue
if check_level >= 4:
val = solve_linear(E, 1 + Kq * (qval - 1), mod)
if val is None or not check_val(val, mask, dqmask_msk, dqmask_val):
continue
if pval * qval == N:
print "Kq =", Kq
print "pwned"
print "p =", pval
print "q =", qval
p = pval
q = qval
d = invmod(E, (p - 1) * (q - 1))
coef = invmod(p, q)
from Crypto.PublicKey import RSA
print RSA.construct(map(long, (N, E, d, p, q, coef))).exportKey()
quit()
cands_next.append(pval)
if not cands_next:
return False
cands = cands_next
return True
def check_val(val, mask, mask_msk, mask_val):
test_mask = mask_msk & mask
test_val = mask_val & mask
return val & test_mask == test_val
# K = 4695
# Kp = 15700
# Kq = 5155
for K in range(1, E):
if K % 100 == 0:
print "checking", K
if search(K, 0, 0, check_level=2, break_step=20):
print "K =", K
break
for Kp in range(1, E):
if Kp % 1000 == 0:
print "checking", Kp
if search(K, Kp, 0, check_level=3, break_step=30):
print "Kp =", Kp
break
for Kq in range(1, E):
if Kq % 100 == 0:
print "checking", Kq
if search(K, Kp, Kq, check_level=4, break_step=9999):
print "Kq =", Kq
break
从缺失的私钥中,我们可以分析出各部分数据代表的数字。
struct
{
BIGNUM *n; // public modulus
BIGNUM *e; // public exponent
BIGNUM *d; // private exponent
BIGNUM *p; // secret prime factor
BIGNUM *q; // secret prime factor
BIGNUM *dmp1; // d mod (p-1)
BIGNUM *dmq1; // d mod (q-1)
BIGNUM *iqmp; // q^-1 mod p
// ...
};
改动原脚本中的各部分内容即可恢复出私钥,大致算法为:
- given a candidate for
(p mod 16**(t - 1))
, generate all possible candidates for(p mod 16**t)
(check against mask for prime1) - calculate
q = n * invmod(p, 16**t)
(and check against mask for prime2) - calculate
d = invmod(e, 16**t) * (1 + k * (N - p - q + 1))
(and check against mask for private exponent) - calculate
d_p = invmod(e, 16**t) * (1 + k_p * (p - 1))
(and check against mask for exponent1) - calculate
d_q = invmod(e, 16**t) * (1 + k_q * (q - 1))
(and check against mask for exponent2) - if any of checks failed - check next candidate
最优非对称加密填充
#!/usr/bin/python
# coding=utf-8
from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_OAEP
with open('pubkey.pem', 'r') as f:
key = RSA.importKey(f)
N = key.n
e = key.e
print N
print e
with open('private.pem', 'r') as f:
private = RSA.importKey(f)
oaep = PKCS1_OAEP.new(private)
with open('flag.enc', 'r') as f:
print oaep.decrypt(f.read())
其实看了半天我也没看懂这是干嘛的。。。